Geometric Quantization in the Framework of Algebraic Lagrangian Geometry

نویسنده

  • Nikolai Tyurin
چکیده

This is a short version of the author’s habilitation thesis. The main results have been published but many details are developed and clarified. As well some new results are included: we additionally discuss here quasi classical limit of ALG(a) quantization, mention some topological properties of the moduli space of Bohr Sommerfeld Lagrangian cycles of fixed volume and investigate some properties of the Kaehler structure on it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Birkhoff's Theorem from a geometric perspective: A simple example

‎From Hilbert's theorem of zeroes‎, ‎and from Noether's ideal theory‎, ‎Birkhoff derived certain algebraic concepts (as explained by Tholen) that have a dual significance in general toposes‎, ‎similar to their role in the original examples of algebraic geometry‎. ‎I will describe a simple example that illustrates some of the aspects of this relationship‎. The dualization from algebra to geometr...

متن کامل

Minimal representations, geometric quantization, and unitarity.

In the framework of geometric quantization we explicitly construct, in a uniform fashion, a unitary minimal representation pio of every simply-connected real Lie group Go such that the maximal compact subgroup of Go has finite center and Go admits some minimal representation. We obtain algebraic and analytic results about pio. We give several results on the algebraic and symplectic geometry of ...

متن کامل

Balanced metrics and noncommutative Kähler geometry

In this paper we show how Einstein metrics are naturally described using the quantization of the algebra of functions C∞(M) on a Kähler manifold M . In this setup one interprets M as the phase space itself, equipped with the Poisson brackets inherited from the Kähler 2-form. We compare the geometric quantization framework with several deformation quantization approaches. We find that the balanc...

متن کامل

Geometry and the Quantum: Basics

Motivated by the construction of spectral manifolds in noncommutative geometry, we introduce a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of scalar fields. This commutation relation appears in two versions, one sided and two sided. It implies the quantization of the volume. In the one-sided case it implies that the manifold decomposes into a...

متن کامل

Deformation quantization of algebraic varieties

The paper is devoted to peculiarities of the deformation quantization in the algebro-geometric context. A direct application of the formality theorem to an algebraic Poisson manifold gives a canonical sheaf of categories deforming coherent sheaves. The global category is very degenerate in general. Thus, we introduce a new notion of a semiformal deformation, a replacement in algebraic geometry ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002